ATTENTION!
Please read this manual, at any rate, prior to installation and commissioning, and keep it for further use!
Contents

1 Preface .. 3
1.1 General information ... 3
1.2 Proper use .. 4

2 Safety .. 4
2.1 Notes and symbols .. 4
2.2 General information with regard to dangerous situations 5
2.3 Staff qualification .. 6
2.4 Product observation .. 6

3 Possible Applications, BTS Characteristics 7

4 Function of BTS .. 8
4.1 Switching element ... 9
4.2 Initiator ... 9
4.3 Evaluator .. 9
4.4 Isolating switch amplifier 9
4.5 Interaction of BTS components 10

5 Technical data .. 11
5.1 Switching element ... 11
5.2 Initiator, mounting flange 12
5.3 Evaluator and isolating switch amplifier 15
5.3.1 Evaluator .. 17
5.3.2 Isolating switch amplifier 230 V AC 18
5.3.3 Isolating switch amplifier 20…30 V DC 19
5.3.4 Explanation of DIP switches in the isolating switch amplifier ... 20

6 Installation ... 21
6.1 As delivered condition, scope of supply 21
6.2 Mounting — switching element and initiator 22
6.3 Installation, connection — evaluator, isolating switch amplifier ... 25

7 Display and Setting of Evaluator 27
7.1 Display — evaluator .. 27
7.2 Setting — evaluator .. 28

8 Commissioning ... 29

9 Repair and maintenance ... 30
9.1 Outside cleaning ... 31

10 Trouble Shooting .. 32

11 Queries, Orders placed for Service Engineers and Spare Parts . 35

12 Spare Parts Information 36
12.1 Standard switching element 36
12.2 Initiator, mounting flange 36
12.3 Evaluator .. 36
12.4 Isolating switch amplifier 36

13 Representatives Voith Turbo GmbH & Co. KG 40

14 Index .. 43
1 Preface

1.1 General information

This manual will support you in using the non-contacting thermal switch unit (BTS) in a safe, proper and economical way. If you observe the information contained in this manual, you will
- increase the reliability and lifetime of the installation,
- avoid any risks,
- reduce repairs and downtimes.

This manual must
- always be available at the BTS site,
- be read and used by every person who works on the unit.

The non-contacting thermal switch unit is manufactured to the state of art and approved safety regulations. Nevertheless, the user's or third parties' life may be endangered or the machine or other material assets impaired in case of improper handling or use.

Spare parts:
Spare parts must comply with the requirements determined by Voith. This is guaranteed when original spare parts are being used. Installation and/or use of non-original spare parts may negatively change the mechanical properties of the BTS and thus have an adverse impact on the safety. Voith is not liable for damages resulting from use of non-original spare parts.

Commissioning, maintenance and repair should only be effected by qualified and trained personnel.

This manual was issued with utmost care. However, in case you should need any further information, please contact:

Voith Turbo GmbH & Co. KG
Start-up Components
Voithstr. 1
74564 Crailsheim
GERMANY
Tel. +49 7951 32-0
Fax: +49 7951 32-480
startup.components@voith.com
www.voithturbo.com/startup-components

© Voith Turbo 2013.
The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

Voith Turbo reserves the right for modifications.
1.2 Proper use

- The non-contacting thermal switch unit (BTS) is provided to monitor the temperature of Voith turbo couplings in a non-contacting way. Use for another purpose, e.g. for operating conditions which were not agreed, is not is not considered as proper use.
- Proper use also includes observance of the installation and operating manual.
- The manufacturer is not liable for damages resulting from improper use. In this case, the risk lies solely with the user.

2 Safety

2.1 Notes and symbols

The safety notes included in this instruction manual are particularly marked with safety marks according to DIN 4844:

<table>
<thead>
<tr>
<th>Damage/ harm to...</th>
<th>Signal word</th>
<th>Definition</th>
<th>Consequences</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons Property</td>
<td>EX-PROTECTION!</td>
<td>Notes to Ex-protection</td>
<td>Explosion hazard</td>
<td>Ex</td>
</tr>
<tr>
<td>Persons</td>
<td>DANGER!</td>
<td>imminent danger</td>
<td>fatal or most serious injuries (crippling)</td>
<td>!</td>
</tr>
<tr>
<td>Persons</td>
<td>WARNING!</td>
<td>dangerous situation possible</td>
<td>fatal or most serious injuries possible</td>
<td>!</td>
</tr>
<tr>
<td>Persons</td>
<td>CAUTION!</td>
<td>less dangerous situation</td>
<td>slight or minor injuries possible</td>
<td>!</td>
</tr>
<tr>
<td>Persons Property</td>
<td></td>
<td>warning of combustible materials</td>
<td>fire hazard</td>
<td></td>
</tr>
<tr>
<td>Persons</td>
<td></td>
<td>use goggles</td>
<td>risk of losing sight, risk of going blind</td>
<td></td>
</tr>
<tr>
<td>Persons</td>
<td></td>
<td>Use ear protection</td>
<td>hearing damage</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>ATTENTION!</td>
<td>harmful situation possible</td>
<td>possible damage to – the product – its environment</td>
<td>!</td>
</tr>
<tr>
<td>–</td>
<td>Note! Information!</td>
<td>application hints and other useful information</td>
<td>efficient in operation</td>
<td>i</td>
</tr>
</tbody>
</table>

Table 1
2.2 General information with regard to dangerous situations

WARNING!
– For all work performed on the non-contacting thermal switch unit, please observe the local regulations for prevention of accidents as well as the regulations for installation of electrical equipment!
– For the use of the non-contacting thermal switch unit in hazardous areas (initiator type NJ 10-22-N-E93) observe the local regulations applicable to electrical equipment in hazardous areas! Modifications on the initiator, including connecting cable, are not permitted.

DANGER!
Working on the non-contacting thermal switch unit:
– Touching uncovered terminals, lines and equipment parts may cause fatal or most serious injuries!
– In the event of a failure, even potential-free assemblies may carry a corresponding supply voltage during operation.

Working on the turbo coupling:
– For all work performed on the turbo coupling, ensure that both the drive motor/engine and the driven machine have stopped running and startup is absolutely impossible!
– Start to work only after the coupling has cooled down below 40°C, otherwise there is a risk of burns!
– In addition, observe the installation and operating manual of the turbo coupling!

Noise:
– The turbo coupling generates noise during operation.
 If the A-classified equivalent sound pressure level exceeds 80 dB(A) this may cause hearing damage!
 Wear ear protection!

Sprayed-off and discharged operating fluid:
– In the event of thermal overload of the turbo coupling the fusible plugs respond. Operating fluid is discharged through these fusible plugs. This may happen only in case of improper use (e.g. design range has not been adhered to).
– If the fusible plugs spray off, immediately switch off drive!
– Electrical devices located near the coupling need to be protected against spraying!
– Please ensure that the sprayed-off operating fluid cannot get in contact with persons! Danger of burning!
– Please ensure that the sprayed-off operating fluid cannot get in contact with persons! Danger of burning! Persons being in the surround
– Make sure that spraying operating fluid cannot get into contact with hot machine parts, heaters, sparks or open flames! There is a risk of fire!
– In order to prevent danger (e.g. risk of skidding, risk of fire) caused by escaping oil, remove same immediately!
– Please provide a catch pan of sufficient size, if required!
2.3 Staff qualification

The staff in charge of any work to be done on the non-contacting thermal switch unit must
- be reliable,
- have the legal minimum age,
- be trained, instructed and authorized with regard to the intended work.
- at use in potentially explosive atmosphere observe EN 1127-1 Annex A and EN 1127-1 Section 7. Only use tools admissible in potentially explosive areas. Avoid sparking.

2.4 Product observation

We are under legal obligation to observe our products, even after shipment. Please therefore inform us about anything that might be of interest to us. For example:
- change in operating data,
- experience gained with the unit,
- recurring problems,
- problems experienced with this installation and operating manual.
3 Possible Applications, BTS Characteristics

The non-contacting thermal switch unit (BTS) is a monitoring system for Voith turbo couplings.

- The BTS provides easy monitoring of turbo coupling temperature.
- In the event of an excess temperature, dependent on the application,
 - the operator can be warned,
 - a drive motor/engine shutdown can be arranged,
 - the load on the driven machine can be reduced.
- If the excess temperature is recognised in time, the discharge or loss of coupling fill through the fusible plugs can be avoided. Downtimes are reduced.
- The BTS automatically resets after the turbo coupling has cooled down.
- The BTS can be used for Voith turbo couplings from size 206.

EX-PROTECTION!
The control circuit of evaluator is not intrinsically safe! Should an intrinsically safe control circuit be required (e.g. for the use in potentially explosive areas), provide an appropriate isolating switch amplifier between evaluator and initiator!

The BTS must not be used as safety device to limit the maximum permissible surface temperature of the turbo coupling in potentially explosive areas!
4 Function of BTS

The non-contacting thermal switch unit (BTS) consists of three components:

- switching element
- initiator with mounting flange
- evaluator
- isolating switch amplifier, two channel for up to 2 initiators (if an intrinsically safe control circuit is required)
4.1 Switching element

The switching element is a passive component (ordinary electrical utility to EN 60079-14 section 12.2.1). It is inserted in the outer wheel or in the turbo coupling shell. This provides a thermal contact between switching element and turbo coupling inclusive operating fluid.

A coil and a thermostatic switch are integrated in the switching element. The switching point of the thermostatic switch corresponds to the response temperature of switching element.

Below the response temperature, the thermostatic switch is closed and bridges the coil. Above the response temperature, the thermostatic switch opens and interrupts the circuit. When the temperature decreases, the thermostatic switch closes the circuit again. The BTS resets automatically.

4.2 Initiator

The initiator is designed as polarised two-wire sensor to DIN EN 60947-5-6 (NAMUR). It works to the inductive sensor principle.

An electric oscillator is integrated in the initiator which produces a high-frequency oscillation. The oscillator has an oscillating circuit as element determining the frequency, comprising a coil and a capacitor.

The oscillating circuit coil is located in the sensor head. An electromagnetic alternating field leaves the sensor head via this coil.

4.3 Evaluator

The evaluator is an electronic unit recording the electric pulses and evaluating the period between the pulses.

The evaluation starts either by switching on the supply voltage or by an external trigger signal.

After evaluation start, monitoring of pulses must be interrupted for an adjustable period of time (start-up bypass time).

A relay with changeover contact will be released if the number of pulses per unit of time drops below a certain value.

The evaluator is equipped with a connection for NAMUR sensors to DIN EN 60947-5-6 (NAMUR).

4.4 Isolating switch amplifier

The isolating switch amplifier transmits digital signals from the potentially explosive area.

Sensors to DIN EN 60947-5-6 (NAMUR) or mechanical contacts may work as transducing sensor.

The intrinsically safe inputs are safely isolated from output and power system according to DIN EN 50020.
4.5 Interaction of BTS components

The switching element is screwed in the turbo coupling instead of a blind screw. The initiator with mounting flange is mounted parallel with the turbo coupling axis and is connected to the evaluator.

The coil inside the switching element is coupled inductively with the coil inside the initiator if the switching element is located in front of the initiator head. In the event of a closed thermostatic switch, energy is transmitted from the initiator to the switching element. The oscillator is attenuated and has a lower current consumption.

If the coupling temperature exceeds the response temperature of switching element, the thermostatic switch will interrupt the circuit in the switching element. The switching element can no longer attenuate the oscillator in the initiator.

The evaluator recognises the attenuation of initiator due to the initiator current consumption.

If the turbo coupling with screwed in switching element rotates, then the switching element will permanently pass the initiator, thus continuously creating attenuation pulses.

The output relay in the evaluator is picked up.

In case of excess temperature, these attenuation pulses are not given, i.e. the limit frequency set on the evaluation is not reached. The evaluator recognises the missing pulses, the output relay is released.

On startup of the turbo coupling, a start-up bypass time is set at the evaluator. As long as the start-up bypass is active, the output relay remains picked up. After this set time, the speed of the turbo coupling with switching element must have exceeded the adjusted limit frequency (see table 5).

DANGER!
Following any shut-down the control system is to be locked in a way that prevents automatic re-start.
Shut-down must be acknowledged!

The coupling may only be restarted, if the coupling temperature is below maximum permissible temperature allowed during motor start!

→ Fig. 1, page 8

→ For max. frequency, see Table 5 page 17

→ For max. permissible temperature, see operating manual of turbo coupling, Chapter 1, Technical Data
5 Technical data

5.1 Switching element

The following switching elements are available for the different turbo coupling sizes:

<table>
<thead>
<tr>
<th>Dimension of thread</th>
<th>M12 x 1.5</th>
<th>M18 x 1.5</th>
<th>M24 x 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal response temperature</td>
<td>125 °C</td>
<td>85 / 90 / 100 / 110 / 125 / 140 / 160 / 180 °C</td>
<td>85 / 125 / 140 / 160 / 180 °C</td>
</tr>
<tr>
<td>To suit coupling sizes...</td>
<td>206 – 274</td>
<td>366 – 650</td>
<td>750 – 1330</td>
</tr>
<tr>
<td>Response tolerance</td>
<td>± 5 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset temperature</td>
<td>approx. 40 °C below the response temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral speed</td>
<td>max. 50 ms⁻¹</td>
<td>max. 60 ms⁻¹</td>
<td>max. 75 ms⁻¹</td>
</tr>
<tr>
<td>Wrench size across flats</td>
<td>17</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>22 Nm</td>
<td>60 Nm</td>
<td>144 Nm</td>
</tr>
</tbody>
</table>

Table 2

Note!
- The type of switching element is stamped in on the housing containing:
 - thread dimension,
 - maximum peripheral speed
 - and the nominal response temperature.
- The response temperature of switching element is determined when designing the coupling.
5.2 Initiator, mounting flange

Fig. 3 Initiator shown with mounting flange

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe switching distance with Voith-switching element</td>
<td>5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>to DIN EN 60947-5-6 (NAMUR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Nominal 8.2 V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>safe attenuation: ≥0.1 mA / ≤1.2 mA</td>
<td>safe non-attenuation: ≥2.1 mA / ≤6.0 mA</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage protection</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible ambient temperature</td>
<td>-25 °C...+70 °C</td>
<td>-25 °C...+100 °C</td>
<td>-40 °C...+70 °C</td>
</tr>
<tr>
<td>Protection to EN 60529</td>
<td>IP 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of protection to DIN EN 50014 and DIN EN 50020</td>
<td>Ex II 2G Ex ia IIC T6 (PTB 00 ATEX 2048 X)</td>
<td>Ex II 1D Ex iaD 20 T x°C (ZELM 03 ATEX 0128 X)</td>
<td></td>
</tr>
<tr>
<td>x: T 85 °C</td>
<td>T 108 °C</td>
<td>T 85 °C</td>
<td></td>
</tr>
<tr>
<td>EMC according to</td>
<td>IEC / EN 60947-5-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress due to shocks</td>
<td>a<30 g, t=11 ms, to IEC 68-2-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress due to vibration</td>
<td>f=55 Hz, s=1 mm, to IEC 68-2-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting line</td>
<td>Y30629: 2 m, PVC</td>
<td>Y30627: 2 m, SIHF</td>
<td>2 m, SIHF</td>
</tr>
<tr>
<td></td>
<td>2 x 0.75 mm², free line ends</td>
<td>2 x 0.75 mm², free line ends</td>
<td>2 x 0.75 mm², free line ends</td>
</tr>
<tr>
<td>Certificates</td>
<td>CSA - 1007121 (LR 96321-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Ø 22 x 75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

1) For temperatures below -20°C, install initiators with mechanical protection.
Manual electrical apparatus for hazardous areas

<table>
<thead>
<tr>
<th>Device category 2G</th>
<th>for use in hazardous areas with gas, vapour and mist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive conformity</td>
<td>94/9/EC</td>
</tr>
<tr>
<td></td>
<td>Ignition protection "Intrinsic safety"</td>
</tr>
<tr>
<td></td>
<td>Use is restricted to the following stated conditions.</td>
</tr>
<tr>
<td>CE symbol</td>
<td>© 0102</td>
</tr>
<tr>
<td>Ex marking</td>
<td>II 2G EEx ia IIC T6</td>
</tr>
<tr>
<td>EC-Type Examination Certificate Appropriate type</td>
<td>PTB 00 ATEX 2048 X</td>
</tr>
<tr>
<td></td>
<td>NJ 10-22-N...</td>
</tr>
<tr>
<td>Effective internal capacitance Ci</td>
<td>≤ 130 nF ; a cable length of 10 m is considered.</td>
</tr>
<tr>
<td>Effective internal inductance Li</td>
<td>≤ 100 μH ; a cable length of 10 m is considered.</td>
</tr>
</tbody>
</table>

General
The equipment has to be operated according to the data given in this description. The EU type examination certificate must be observed. The special conditions must be adhered to! Directive 94/9/EC and hence also EU type examination certificates apply in general only to the use of electrical apparatus under atmospheric conditions. The use in ambient temperatures of > 60 °C was tested with regard to hot surfaces by the mentioned certification authority. If the equipment is not used under atmospheric conditions, a reduction of the permissible minimum ignition energies may have to be taken into consideration.

ambient temperature
The temperature ranges, according to temperature class, are given in the EU type examination certificate.

Installation, Commissioning
Laws and/or regulations and standards governing the use or intended usage goal must be observed. The intrinsic safety is only assured in connection with an appropriate related apparatus and according to the proof of intrinsic safety.

Repair and maintenance
No changes can be made to apparatus, which are operated in hazardous areas. Repairs to these apparatus are not possible.

Special conditions
Protection from mechanical danger
The sensor must not be mechanically damaged. When used in the temperature range below -20 °C the sensor should be protected from knocks by the provision of an additional housing.

Table 4
Manual electrical apparatus for hazardous areas

<table>
<thead>
<tr>
<th>Device category 1D</th>
<th>for use in hazardous areas with combustible dust.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directive conformity</td>
<td>94/9/EC</td>
</tr>
<tr>
<td>Standard conformity</td>
<td>IEC 61241-11:2002 draft: prEN61241-0:2002 Ignition protection “iD”</td>
</tr>
<tr>
<td>Use is restricted to the following stated conditions.</td>
<td></td>
</tr>
<tr>
<td>CE symbol</td>
<td>☀ 0102</td>
</tr>
<tr>
<td>Ex marking</td>
<td>☀ II 1D Ex iaD 20 T 85 °C or T 108 °C</td>
</tr>
<tr>
<td>EC-Type Examination Certificate</td>
<td>ZELM 03 ATEX 0128 X</td>
</tr>
<tr>
<td>Appropriate type</td>
<td>NJ 10-22-N-E93-Y30629</td>
</tr>
<tr>
<td>Effective internal capacitance C_i</td>
<td>$\leq 130 \text{nF}$; a cable length of 10 m is considered.</td>
</tr>
<tr>
<td>Effective internal inductance L_i</td>
<td>$\leq 100 \text{μH}$; a cable length of 10 m is considered.</td>
</tr>
</tbody>
</table>

General
- The equipment has to be operated according to the data given in this description.
- The EU type examination certificate must be observed.
- The special conditions must be adhered to!

- Directive 94/9/EC and hence also EU type examination certificates apply in general only to the use of electrical apparatus under atmospheric conditions.
- The use in ambient temperatures of $> 60 \, ^\circ\text{C}$ was tested with regard to hot surfaces by the mentioned certification authority.
- If the equipment is not used under atmospheric conditions, a reduction of the permissible minimum ignition energies may have to be taken into consideration.

Maximum housing surface temperature
- For the maximum housing surface temperature please refer to the data indicated.

Installation, Commissioning
- The respective statutory regulations and directives governing the application or intended use should be observed. The intrinsic safety is only assured in connection with an appropriate related apparatus and according to the proof of intrinsic safety.

- The associated apparatus must satisfy at least the requirements of category ia IIB or iaD. Because of the possibility of the danger of ignition, which can arise due to faults and/or transient currents in the equipotential bonding system, galvanic isolation in the power supply and signal circuits is preferable. Associated apparatus without electrical isolation must only be used if the appropriate requirements of IEC 60079-14 are met.

- The intrinsically safe circuit has to be protected against influences due to lightning.

- When used in the isolating wall between Zone 20 and Zone 21 or Zone 21 and Zone 22 the sensor must not be exposed to any mechanical danger and must be sealed in such a way, that the protective function of the isolating wall is not impaired. The applicable directives and standards must be observed.

Repair and maintenance
- No changes can be made to apparatus, which are operated in hazardous areas.
- Repairs to these apparatus are not possible.

Special conditions
- The connection cables are to be laid in accordance with EN 50281-1-2 and must not normally be subjected to chaffing during use.

Table 4
5.3 Evaluator and isolating switch amplifier

Proper use

- The respective statutory regulations and directives governing the application or intended use should be observed.
- Devices that were operated in general electric installations must not be used afterwards in electric installations that are in connection to explosive hazardous areas.
- Intrinsic safe circuits that were operated with circuits of other types of protection may not be used as intrinsic safe circuits afterwards.
- Circuits in type of protection "nL" that were operated with circuits of other types of protection (except intrinsic safe circuits) must not be used in type of protection "nL" afterwards.

Installation and commissioning in the safe area

Commissioning and installation must be carried out by specially trained qualified personnel only.

- The devices are designed to satisfy the IP20 protection classification according to EN 60529, and must be protected accordingly in case of adverse environmental conditions such as splash water or dirt exceeding Contamination Level 2.
- The devices must be installed outside the hazardous area!
- For devices with intrinsically safe circuits, the protected circuit (light blue identification on the device) can be located in the hazardous area. It is especially important to ensure that all non-intrinsically safe circuits are safely isolated.
- The installation of the intrinsically safe circuits is to be conducted in accordance with the relevant installation regulations.
- The respective peak values of the field device and the associated device with regard to explosion protection should be considered when connecting intrinsically safe field devices with the intrinsically safe circuits of K-system devices (demonstration of intrinsic safety). Here EN 60079-14 / IEC60079-14 is to be observed. The "National Foreword" of DIN EN 60079-14 / VDE 0165 Part 1 must also be observed for the Federal Republic of Germany.
- If more channels of one device are to be connected parallel it must be ensured that the parallel connection is made directly at the terminals. For the demonstration of intrinsic safety the maximum values of the parallel connection are to be regarded.
- When intrinsically safe circuits are used in areas made hazardous by dust (Ex zone "D") only appropriately certificated field devices must be used.
- The EU certificates of conformity or EC-Type Examination Certificates should be observed. It is especially important to observe the "special conditions" where these are contained in the certificates.
Repair and maintenance

The transmission behaviour of the devices is stable also for longer time periods; thus a regular adjustment or similar is not necessary. Also, no other maintenance work is necessary.

Fault elimination

No changes can be made to devices which are operated in hazardous areas. Repairs on the device are also not allowed.

Isolation coordinates for devices with Ex-certificate according to EN 50020

The devices are assessed for pollution degree 2 and overvoltage category II according to EN 50178.

Isolation coordinates for installations for galvanic isolation according to EN 50178 and EN 61140

The devices of the K-system are installation devices respectively electronic equipment for the use in secluded electrical operating sites were only skilled personnel or electrically instructed personnel must have admission or access to. The devices are assessed for pollution degree 2 and overvoltage category II according to EN 50178.

Ambient conditions

- Ambient temperature: see data sheet
- Storage temperature: -40 °C ... +90 °C (233 K ... 363 K)
- Humidity: max. 75 % rel. humidity without moisture condensation.

Electrical connection

The removable terminals simplify considerably the connection and control cabinet construction. In case of service, they allow an easy and trouble-free replacement of the device.

These screwed, self-opening terminals allow space for the connection of leads with core cross sections of up to 2.5 mm². The connectors are coded, so that it is not possible to make an incorrect connection.

Intrinsically safe field circuits are connected to the blue terminals. These may be conducted using DIN EN 60079-14-compliant leads into the hazardous area. Non-intrinsically safe field circuits are connected to the green terminals.
5.3.1 Evaluator

| Supply voltages | 230 V AC ± 10%, 47…63 Hz, < 5 VA
or 115 V AC ± 10%, 47…63 Hz, < 5 VA
or 24 V DC +15% / -10%, residual ripple Uss ≤ 10%, < 5 W |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal input</td>
<td>to DIN EN 60947-5-6 (NAMUR):</td>
</tr>
<tr>
<td></td>
<td>– no load voltage: 8.2 V DC</td>
</tr>
<tr>
<td></td>
<td>– short circuit current: 6.5 mA</td>
</tr>
<tr>
<td></td>
<td>– switching points: ≥ 1.2 mA / ≤ 2.1 mA (terminals 8, 9)</td>
</tr>
<tr>
<td>Output relay</td>
<td>changeover contact, switching capacity:</td>
</tr>
<tr>
<td></td>
<td>– 250 V AC, 2 A, cosφ=0.7</td>
</tr>
<tr>
<td></td>
<td>– 40 V DC, 2 A</td>
</tr>
<tr>
<td>Start-up bypass</td>
<td>triggering by switching on the supply voltage or by an external signal (16…30 V DC, signal duration > start-up bypass time)</td>
</tr>
<tr>
<td>Start-up bypass time</td>
<td>1…120 s in 1 s-steps, set at the factory: 10 s</td>
</tr>
<tr>
<td>Ready delay</td>
<td>≤ 400 ms</td>
</tr>
<tr>
<td>Limit frequency</td>
<td>1 Hz (corresponds to 60 rpm)</td>
</tr>
<tr>
<td>Displays</td>
<td>4-digit 7-segment display, red, height of characters: 7 mm</td>
</tr>
<tr>
<td></td>
<td>LED, yellow, for switching condition of output relay</td>
</tr>
<tr>
<td>Design</td>
<td>modular terminal housing</td>
</tr>
<tr>
<td>Mounting</td>
<td>by clipping onto 35 mm standard rail acc. to DIN EN 50022</td>
</tr>
<tr>
<td></td>
<td>or to be screwed by pull-out clips with 90 mm-grid</td>
</tr>
<tr>
<td>Stress due to shocks</td>
<td>as per EN 60028-2-27, 15 g, 11 ms, half sinus</td>
</tr>
<tr>
<td>Stress due to vibration</td>
<td>as per EN 60028-2-6, 10 Hz … 150 Hz, 1 g, high transition frequency</td>
</tr>
<tr>
<td>Connecting terminals</td>
<td>coded plug, max. 2.5 mm²</td>
</tr>
<tr>
<td>Permissible ambient temperature</td>
<td>-25 °C…+50 °C</td>
</tr>
<tr>
<td>Relative air humidity</td>
<td>max. 80%, without condensation</td>
</tr>
<tr>
<td>Protection to EN 60529</td>
<td>IP 20</td>
</tr>
<tr>
<td>EMC according to</td>
<td>EN 50081-2, EN 50082-2</td>
</tr>
<tr>
<td>Certificates</td>
<td>CSA 2137693</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 420 g</td>
</tr>
</tbody>
</table>

Table 5

1) Previous device KFU8-DW-1.D-Y128215 can be replaced by this device without any technical modifications.
5.3.2 Isolating switch amplifier 230 V AC

Power system
- **Supply voltage**
 - 230 V AC ± 10 %, 47...63 Hz, ≤ 1.5 W

Signal input (intrinsically safe)
- **Nominal data**
 - to DIN EN 60947-5-6 (NAMUR)
- **Open-circuit voltage / short-circuit current**
 - approx. 8 V DC / approx. 8 mA
- **Switching point / hysteresis**
 - 1.2 ... 2.1 mA / approx. 0.2 mA
- **Power monitoring**
 - Rupture I ≤ 0.1 mA, short-circuit I > 6 mA

Maximum values according to conformity and/or model inspection certificate
- **Certificate number**
 - PTB 98 ATEX 2164
- **Group, class, fuse protection**
 - II (1) G D [EEx ia] IIC [circuit(s) in zone 0/1/2]
- **Voltage U₀**
 - 10.5 V
- **Current I₀**
 - 13 mA
- **Power P₀**
 - 34 mW (characteristic curve linear)
- **Fuse protection, class**
 - [EEx ia and EEx ib]
- **Explosion group**
 - IIIB
- **IIIC
- Outer capacity**
 - 16.8 μF
- **2.41 μF
- Outer inductivity**
 - 730 mH
- **200 mH

Output (not intrinsically safe)
- **Output**
 - Signal; electronic output, passive
- **safety maximum voltage Uₘ**
 - 253 V AC (Attention! Uₘ is no rated voltage)
- **Signal level**
 - 1-Signal: 2.5 V max. for 10 mA (external voltage) or 3.0 V max. for 100 mA (100 mA, short-circuit-proof)
 - 0-Signal: blocked output (residual current ≤ 10 μA)
- **Transmission properties**
 - Switching frequency ≤ 5 kHz

Contact separation
- **Input / input**
 - not available
- **Input / output**
 - according to IEC 60079-11
- **Input / supply**
 - according to IEC 60079-11

Standards
- **Input**
 - to DIN EN 60947-5-6 (NAMUR)
- **Transition category II**
 - to DIN EN 50178
- **Climatic conditions**
 - to DIN IEC 721
- **Electromagnetic compatibility RL 89/336/EG**
 - to EN 50081-2 / EN 50082-2, NAMUR NE 21

Ambient conditions
- **Ambient temperature**
 - -20 ... 60 °C (253 ... 333 K)

Mechanical data
- **Weight**
 - approx. 150 g

Table 6

Explanation of DIP switches S1, S2, S3:

Chapter 5.3.4
5.3.3 Isolating switch amplifier 20…30 V DC

Power system

| Power system | Supply voltage | 20 ... 30 V DC, ripple ± 10%, rated current ≤ 50 mA |

Signal input (intrinsically safe)

Nominal data	to DIN EN 60947-5-6 (NAMUR)
Open-circuit voltage / short-circuit current	approx. 8 V DC / approx. 8 mA
Switching point / hysteresis	1.2 ... 2.1 mA / approx. 0.2 mA
Power monitoring	Rupture I ≤ 0.1 mA, short-circuit I > 6 mA

Maximum values according to conformity and/or model inspection certificate

Certificate number	PTB 00 ATEX 2035
Group, class, fuse protection	II (1) G D [EEx ia] IIC [circuit(s) in zone 0/1/2]
Voltage U_o	10.5 V
Current I_o	13 mA
Power P_o	34 mW (characteristic curve linear)

Output (not intrinsically safe)

Output	Signal: electronic output, passive
Safety maximum voltage U_m	40 V DC (Attention! U_m is no rated voltage)
Signal level	1-Signal: 2.5 V max. for 10 mA (external voltage) or 3.0 V max. for 100 mA (100 mA, short-circuit-proof)
0-Signal: blocked output (residual current ≤ 10 μA)	

Transmission properties

| Switching frequency | ≤ 5 kHz |

Contact separation

| Input / output | to EN 50020, pak voltage value 375 V |
| Input / supply | to EN 50020, pak voltage value 375 V |

Standards

Input	to DIN EN 60947-5-6 (NAMUR)
Transition category II	to DIN EN 50178
Climatic conditions	to DIN IEC 721
Electromagnetic compatibility RL 89/336/EG	to EN 50081-2, EN 50082-2, NAMUR NE 21

Ambient conditions

| Temperature | -20 ... 60 °C (253 ... 333 K) |
| Mechanical data | Weight | approx. 150 g |

Table 7

Explanation of DIP switches S1, S2, S3:

Chapter 5.3.4
5.3.4 Explanation of DIP switches in the isolating switch amplifier

Switch position

<table>
<thead>
<tr>
<th>S</th>
<th>Function</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direction of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output I active</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Output II active</td>
<td>II</td>
</tr>
<tr>
<td>2</td>
<td>Direction of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output II active</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Output I active</td>
<td>II</td>
</tr>
<tr>
<td>3</td>
<td>Line fault detection</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
</tr>
</tbody>
</table>

Table 8

Operating modes

<table>
<thead>
<tr>
<th>Control current circuits</th>
<th>Input signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-resistance initiator / contact open</td>
<td>low input current</td>
</tr>
<tr>
<td>Low-resistance initiator / contact closed</td>
<td>high input current</td>
</tr>
<tr>
<td>wire breakage, short-line fault</td>
<td>Line fault</td>
</tr>
</tbody>
</table>

Table 9

Factory-provided setting: switches 1, 2 and 3 on position I
6 Installation

DANGER!
– Please observe, in particular, chapter 2 (Safety)!
– During installation, please observe that all components are potential-free!
– Fusible plugs
 Fusible plugs protect the turbo coupling against damages due to thermal overload.
 Even when the BTS is used, the fusible plugs must not get replaced by blind screws or by fusible plugs with other rated response temperatures!

6.1 As delivered condition, scope of supply
– Switching element with sealing ring,
– initiator with mounting flange and
– evaluator
are usually supplied as loose parts, together with the turbo coupling.

ATTENTION!
Please contact Voith in the event of subsequent installation of the BTS for the coupling sizes 206 and 274!

Note!
Standard combinations of switching elements and fusible plugs:

<table>
<thead>
<tr>
<th>Response temperatures</th>
<th>Switching element</th>
<th>Fusible plugs</th>
<th>Color coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 °C</td>
<td>180 °C</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>140 °C</td>
<td>160 °C</td>
<td>green</td>
<td></td>
</tr>
<tr>
<td>125 °C</td>
<td>160 °C</td>
<td>green</td>
<td></td>
</tr>
<tr>
<td>110 °C</td>
<td>140 °C</td>
<td>red</td>
<td></td>
</tr>
</tbody>
</table>

The correlation between switching element and fusible plug may vary according to the project design. Different response temperatures of the switching element (85°C, 90°C, 100°C, 110°C, 125°C, 140°C, 160°C and 180°C) are also available.
Please contact Voith Turbo.
Please also refer to order documents.
6.2 Mounting — switching element and initiator

ATTENTION!
To avoid any damages, switching element and initiator should be mounted after installation and prior to filling the turbo coupling.
By no means modify any apparatus operated in potentially explosive atmospheres.
Repairs on these apparatus are not possible.
Avoid any impact effects on the initiator.
Working on the machine is only permitted in non-explosive atmospheres.
In order to prevent electrostatic charge, lay the connecting cables according to EN 50281-1-2. They must not be rubbed during operation.

- Replace the blind screw by the switching element with the sealing ring in the Turbo coupling outer wheel (item 0300) or shell (item 0190)\(^1\).

Arrangement of switching element on outer wheel side\(^2\):

![Fig. 7](image)

Arrangement of switching element on shell side
(Not available for type DT or T...S):

![Fig. 8](image)

\(^1\) Not available for types 366T, 422T and DT
\(^2\) In case of type DT installation on the opposite outer wheel side is also possible.
Installation dimensions for switching element and initiator:

<table>
<thead>
<tr>
<th>Turbo-coupling type</th>
<th>Outer wheel side</th>
<th>Shell side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pitch circle diameter Ø F [mm]</td>
<td>Distance -H [mm]</td>
</tr>
<tr>
<td>206 T</td>
<td>196 ± 1</td>
<td>111.5</td>
</tr>
<tr>
<td>206 DT</td>
<td>196 ± 1</td>
<td>151.5</td>
</tr>
<tr>
<td>274 T</td>
<td>268 ± 1</td>
<td>152</td>
</tr>
<tr>
<td>274 DT</td>
<td>268 ± 1</td>
<td>190</td>
</tr>
<tr>
<td>366 T</td>
<td>350 ± 1</td>
<td>193</td>
</tr>
<tr>
<td>422 T</td>
<td>396 ± 1</td>
<td>206</td>
</tr>
<tr>
<td>487 T</td>
<td>470 ± 1</td>
<td>228</td>
</tr>
<tr>
<td>562 T</td>
<td>548 ± 1</td>
<td>248</td>
</tr>
<tr>
<td>650 T</td>
<td>630 ± 1</td>
<td>289</td>
</tr>
<tr>
<td>750 T</td>
<td>729 ± 1</td>
<td>318</td>
</tr>
<tr>
<td>866 T</td>
<td>840 ± 1</td>
<td>356</td>
</tr>
<tr>
<td>866 DT</td>
<td>840 ± 1</td>
<td>600</td>
</tr>
<tr>
<td>1000 T</td>
<td>972 ± 1</td>
<td>369</td>
</tr>
<tr>
<td>1000 DT</td>
<td>972 ± 1</td>
<td>672</td>
</tr>
<tr>
<td>1150 T</td>
<td>1128 ± 1</td>
<td>458</td>
</tr>
<tr>
<td>1150 DT</td>
<td>1128 ± 1</td>
<td>783</td>
</tr>
<tr>
<td>1330 DT</td>
<td>1302 ± 1</td>
<td>912</td>
</tr>
</tbody>
</table>

Table 11

Please refer to assembly plan of the turbo coupling for installation dimensions of deviating arrangement.
ATTENTION!

- Ensure a sufficient brake stability (not included in Voith's scope of supply)!
- Avoid any vibration, which might create false signals!
- Observe the metal-free area (15mm) around the initiator head (→ Fig. 10)!

- Mount the initiator with mounting flange on the pitch circle diameter of switching element and on a bracket parallel with the turbo coupling axis.
- The initiator end is mounted flush with the mounting flange.
 The mounting flange front is mounted flush with the bracket.
- Set the distance between initiator head and switching element to $4 \frac{1}{16}$ mm!
6.3 Installation, connection — evaluator, isolating switch amplifier

Note!
- Wiring of the BTS is not included in Voith's scope of supply!
- In case of larger distances between initiator and evaluator, we recommend using a shielded cable for extension purposes.

ATTENTION!
Total resistance of an extension cable between initiator and evaluator to be less than 100 Ω.

- Install the evaluator and if necessary the isolating switch amplifier in an appropriate cubicle and connect it in accordance with the wiring diagram.

Wiring diagram:

![Wiring Diagram](image-url)
- **Terminal assignment: Evaluator**

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND for trigger input</td>
</tr>
<tr>
<td>2</td>
<td>Trigger input for start-up bypass, +20…+28 V DC</td>
</tr>
<tr>
<td>3</td>
<td>Voltage supply for trigger input, when triggering by switching on the supply voltage, provide a bridge between the terminals 3 and 2 (as delivered condition!)</td>
</tr>
<tr>
<td>4</td>
<td>Supply voltage, +24 V DC</td>
</tr>
<tr>
<td>5</td>
<td>Supply voltage, GND</td>
</tr>
<tr>
<td>6</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>7</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>8</td>
<td>NAMUR input, L-</td>
</tr>
<tr>
<td>9</td>
<td>NAMUR input, L+</td>
</tr>
<tr>
<td>10</td>
<td>Output relay, make contact, NO</td>
</tr>
<tr>
<td>11</td>
<td>Output relay, break contact, NC</td>
</tr>
<tr>
<td>12</td>
<td>Output relay, root, COM</td>
</tr>
<tr>
<td>13</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>14</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>15</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>16</td>
<td>Supply voltage, 230 V AC, L1</td>
</tr>
<tr>
<td>17</td>
<td>Supply voltage, 115 V AC, L1</td>
</tr>
<tr>
<td>18</td>
<td>Supply voltage, N</td>
</tr>
</tbody>
</table>

Table 12

EX-PROTECTION!

- The control circuit of the evaluator is not intrinsically safe!
- If an intrinsically safe control circuit is required, an appropriate isolating switch amplifier is to be provided between evaluator and initiator!

- **Terminal assignment: Isolating switch amplifier**

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>NAMUR input 1, L+</td>
</tr>
<tr>
<td>2+</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>3-</td>
<td>NAMUR input 1, L-</td>
</tr>
<tr>
<td>4+</td>
<td>NAMUR input 2, L+</td>
</tr>
<tr>
<td>5+</td>
<td>Do not connect!</td>
</tr>
<tr>
<td>6-</td>
<td>NAMUR input 2, L-</td>
</tr>
<tr>
<td>7</td>
<td>Output 1 +</td>
</tr>
<tr>
<td>8</td>
<td>Output 1/2 -</td>
</tr>
<tr>
<td>9</td>
<td>Output 2 +</td>
</tr>
<tr>
<td>14+</td>
<td>Supply voltage, 230 V AC, L1</td>
</tr>
<tr>
<td>15-</td>
<td>Supply voltage, N</td>
</tr>
</tbody>
</table>

Table 13
7 Display and Setting of Evaluator

7.1 Display — evaluator

- Operating mode:

 - temperature okay
 - normal operation

 \[\text{Fig. 12} \]

 - Excess temperature
 - speed of switching element < 60 rpm

 - start-up bypass active
 - no temperature monitoring!

- Setting mode:

 - setting of start-up bypass time

 - No. of software version

 \[\text{Fig. 13} \]
7.2 Setting — evaluator

- If required, set the start-up bypass time; factory setting: **10 s**!
 Perform the setting via the front pushbuttons as per Fig. 14 (page 28).

Note!
- The start-up bypass time begins with triggering the start-up bypass.
- After the start-up bypass time, the speed of turbo coupling with switching element must have clearly exceeded **60 rpm**!
- Factory setting of the start-up bypass time: **10 s**.

ATTENTION!
During start-up bypass time, no excessive temperature of the turbo coupling is recorded!
8 Commissioning

DANGER!
Please observe, in particular, chapter 2 (Safety) when working on the BTS!

- Check the wiring according to Fig. 11.
 Observe, in particular, proper wiring of supply voltage!

- Apply supply voltage to the evaluator, first without starting the turbo coupling. The device displays when the start-up by-pass is active. The output relay is picked up and the front LED lights up.

- After the start-up bypass time, device displays . The output relay is released and the front LED extinguishes.

- If required, set the start-up bypass time to chapter 7.2.

- In case of external triggering, remove the factory-installed bridge between terminals 2 and 3 of the evaluator.

- Start the BTS with turbo coupling in a normal way. After the start-up bypass time, the speed of the turbo coupling with switching element must have clearly exceeded 60 rpm. The evaluator will display if there is no excessive temperature. The output relay remains in pick up position and the front LED lights up.

- Switch off the drive with the turbo coupling, leave the BTS in the mode ready for operation. If the speed of the turbo coupling with switching element drops below 60 rpm, the evaluator displays . The output relay is released and the front LED extinguishes.

- Normal operation can start now. In case of malfunctions, see chapter 10.
9 Repair and maintenance

Definition according to IEC 60079:

Maintenance and Repair: A combination of all activities conducted in order to maintain an object in a condition or to re-condition the article in a way that satisfies the requirements of the respective specification and secures the required functions.

Inspection: An activity containing the careful examination of an object which aims to a reliable statement as to the condition of this object. This examination is performed without disassembly or, if required, with partly disassembly supplemented by measures, such as e.g. measurements.

Visual test: A visual test is an examination which detects visible defects, such as e.g. missing screws or bolts, without using accessive devices or tools.

Short-range examination: An examination, where, in addition to the visual test, also such defects, as e.g. loose screws or bolts, are detected which can only be seen when using accessive devices, such as e.g. mobile stair steps (if required) and tools. Usually short range examinations do not require to open the housing or to electrically disconnect the utility.

Detail test: An examination which, in addition to the aspects of the short range examination, detects such defects, as e.g. loose connections which can only be found by opening the housing and/or by using tools and test devices, if required.

– Only skilled, trained and authorized personnel or persons trained by Voith Turbo are allowed to execute repair measures.
– Components may only be replaced by original spare parts which are approved for use in potentially explosive atmospheres.
– Regularly clean devices used in explosion hazardous areas. The operator specifies the intervals according to ambient conditions at site, e.g. at dust deposit of approx. 0.2…0.5 mm.
– Following maintenance and/or repair re-attach all barriers and notes which have been removed in its original position.
DANGER!
Please observe, in particular, chapter 2 (Safety) when working on the BTS!

Maintenance schedule:

<table>
<thead>
<tr>
<th>Maintenance intervals</th>
<th>Maintenance works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 1000 operating hours, every 6 months, at the latest.</td>
<td>Inspect unit for irregularities (visual test, dust deposits).</td>
</tr>
<tr>
<td>6 months after commissioning, at the latest, then every 2 years</td>
<td>Check electric unit for sound condition (detail examination).</td>
</tr>
<tr>
<td>In case of impurities</td>
<td>Cleaning (see chapter 9.1)</td>
</tr>
</tbody>
</table>

Table T4

Record the maintenance work.

For report forms, please see the operating manual of the turbo coupling

9.1 Outside cleaning

ATTENTION!
— Observe compatibility of cleaning agent with plastic housing of BTS and rubber seal of cable connection!
— Do not use high-pressure cleaning apparatus!
— Handle rubber sealing of cable connection carefully. Avoid water and compressed-air jet!

— Clean BTS with grease solvent, if required.
10 Trouble Shooting

DANGER!
Please observe, in particular, chapter 2 (Safety) when working on the BTS!

EX-PROTECTION!
You must not change devices which are operated in hazardous areas. Repairs are not permitted – replace the unit.

The following table serves to find the cause of failures or problems quickly and to take remedial action, if necessary.

<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible cause(s)</th>
<th>Remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display of the evaluator does not work.</td>
<td>No supply voltage is applied to the evaluator.</td>
<td>Apply supply voltage, see Fig. 11.</td>
</tr>
<tr>
<td></td>
<td>The evaluator is defective.</td>
<td>Replace the evaluator.</td>
</tr>
<tr>
<td>Triggering of the start-up bypass by applying supply voltage does not work.</td>
<td>The bridge between terminals 3 and 2 of the evaluator was removed.</td>
<td>Insert the bridge, see Fig. 11.</td>
</tr>
<tr>
<td>Triggering of the start-up by-pass by means of an external signal does not work.</td>
<td>The bridge between terminals 3 and 2 of the evaluator was not removed.</td>
<td>Remove the bridge, see Fig. 11.</td>
</tr>
<tr>
<td></td>
<td>The external triggering signal was too short.</td>
<td>The triggering signal should at least be applied during the start-up bypass time.</td>
</tr>
<tr>
<td>Display on the evaluator: PEP-PEP</td>
<td>Electronic error.</td>
<td>Switch off and on the power supply.</td>
</tr>
<tr>
<td>Display appears again after switching OFF or ON.</td>
<td>Evaluator defective.</td>
<td>Replace evaluator.</td>
</tr>
</tbody>
</table>

Table 15
<table>
<thead>
<tr>
<th>Malfunction</th>
<th>Possible cause(s)</th>
<th>Remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>After the start-up by-pass time, excessive temperature ((T_{ex})) is</td>
<td>The start-up by-pass time was selected too short.</td>
<td>After the start-up bypass time, the speed of turbo coupling with switching element should have clearly exceeded 60rpm. Increase the start-up bypass time accordingly.</td>
</tr>
<tr>
<td>always displayed though there is no excessive temperature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The initiator poles are reversed.</td>
<td>Check the initiator connection, see Fig. 11.</td>
</tr>
<tr>
<td></td>
<td>The distance between initiator head and switching element is too large.</td>
<td>Set the distance to 4 mm, see Fig. 10.</td>
</tr>
<tr>
<td></td>
<td>The initiator is defective.</td>
<td>Check the initiator, replace if required.</td>
</tr>
<tr>
<td></td>
<td>The switching element is defective.</td>
<td>Check the switching element, replace if required.</td>
</tr>
<tr>
<td>After the start-up bypass time, excessive temperature ((T_{ex})) is</td>
<td>The distance between the initiator head and the switching element is too large.</td>
<td>Set the distance to 4 mm, see Fig. 10.</td>
</tr>
<tr>
<td>occasionally displayed though there is no excessive temperature.</td>
<td></td>
<td>Ensure a sufficient bracket stability, see Fig. 10.</td>
</tr>
<tr>
<td>When the start-up by-pass is active, operating fluid is leaking through the</td>
<td>The start-up bypass time was selected too high.</td>
<td>Set a shorter start-up bypass time so that the speed of turbo coupling with switching element will have clearly exceeded 60rpm after the start-up bypass time.</td>
</tr>
<tr>
<td>fusible plugs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After the start-up by-pass time, operating fluid is leaking through the</td>
<td>The response temperatures of switching element and fusible plugs do not match.</td>
<td>Please consult Voith (see chapter 11).</td>
</tr>
<tr>
<td>fusible plugs, the BTS did not display any excessive temperature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The switching element is defective.</td>
<td>Check the switching element, replace if required.</td>
</tr>
</tbody>
</table>

Table 16

Please consult Voith Turbo (\(\rightarrow \) chapter 11), in case of a malfunction which is not included in this table.
In order to determine the cause of failure more precisely, the following measures should be taken in the corresponding order:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Result</th>
<th>Probable cause of failure</th>
</tr>
</thead>
</table>
| **Apply supply voltage to the evaluator.**
Measure the no-load voltage and the short circuit current at the NAMUR input (terminals 9 and 8). | Clear deviation from the setpoints
– no load voltage 8.2 V DC
– short circuit current 6.5 mA | Defective evaluator |
| **Connect the initiator to the evaluator.**
Measure the current consumption of the initiator which is not attenuated. | Current consumption
> 6.0 mA
or
< 2.1 mA | Defective initiator |
| **Connect the initiator to the evaluator.**
Measure the current consumption of the initiator which is attenuated.
Note:
The initiator can, for example, be attenuated with a metal plate which is held directly in front of the initiator head. | Current consumption
> 1.2 mA
or
< 0.1 mA | Defective initiator |
| **Attenuate the initiator, after proper installation, with the switching element, with the coupling not being overheated.** | Current consumption
> 1.2 mA
and
< 6.0 mA | Defective switching element |

Table 17
11 Queries, Orders placed for Service Engineers and Spare Parts

In case of
– queries,
– Order for a service engineer
– Spare part order
we need the Serial No. and type designation of the turbo coupling for which the BTS is used.

Type T

![Figure 15](image)

Type TDM-SAE

![Figure 16](image)

→ You will find the serial number and type designation either on the outer wheel / shell (A) or at the coupling periphery (B).
→ The serial no. is marked with figure stamps.
→ for couplings to be used in potentially explosive atmospheres, you will find the Ex-identification at the coupling periphery (B).

If an order is placed for a service engineer, we need, in addition,
– the coupling site,
– the address of a contact person,
– details of the occurred problem.

In the event of a spare parts order, we need, in addition:
– the destination of spare parts shipment.

Please contact:
Voith Turbo GmbH & Co. KG
Voithstr. 1
74564 Crailsheim, Germany
Tel. +49 7951 32-1881
Fax: +49 7951 32-480
startup.components@voith.com

Outside business hours:
Voith Turbo GmbH & Co. KG
Tel. +49 7951 32-1666
Fax. +49 7951 32-903
coupling-service@voith.com
www.voith-coupling-service.com
12 Spare Parts Information

ATTENTION!
Repair in a professional manner can only be guaranteed by the manufacturer!

12.1 Standard switching element

<table>
<thead>
<tr>
<th>Use for Turbo coupling size</th>
<th>Thread dimension</th>
<th>Nominal response temperature</th>
<th>Type of switching element</th>
<th>Material No.</th>
<th>Material No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>206 - 274</td>
<td>M12x1.5</td>
<td>125 °C</td>
<td>12-50-125</td>
<td>TCR.10498440</td>
<td>TCR.03658012</td>
</tr>
<tr>
<td>366 - 650</td>
<td>M18x1.5</td>
<td>85 °C</td>
<td>18-60-085</td>
<td>TCR.10672470</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 °C</td>
<td>18-60-090</td>
<td>TCR.10642650</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 °C</td>
<td>18-60-110</td>
<td>TCR.10642630</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 °C</td>
<td>18-60-125</td>
<td>TCR.10499540</td>
<td>TCR.03658018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140 °C</td>
<td>18-60-140</td>
<td>TCR.10499550</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 °C</td>
<td>18-60-160</td>
<td>TCR.10499560</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 °C</td>
<td>18-60-180</td>
<td>TCR.10499570</td>
<td></td>
</tr>
<tr>
<td>750 - 1330</td>
<td>M24x1.5</td>
<td>85 °C</td>
<td>24-75-085</td>
<td>TCR.11973940</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 °C</td>
<td>24-75-125</td>
<td>TCR.10488230</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>140 °C</td>
<td>24-75-140</td>
<td>TCR.10653470</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 °C</td>
<td>24-75-160</td>
<td>TCR.10633550</td>
<td>TCR.03658024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 °C</td>
<td>24-75-180</td>
<td>TCR.10488220</td>
<td></td>
</tr>
</tbody>
</table>

Table 18

12.2 Initiator, mounting flange

<table>
<thead>
<tr>
<th>Type of initiator</th>
<th>Material No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJ 10-22-N-E93-Y30629-70</td>
<td>TCR.10678650</td>
</tr>
<tr>
<td>NJ 10-22-N-E93-Y30627-100</td>
<td>TCR.10678670</td>
</tr>
<tr>
<td>NJ 10-22-N-E93-Y106925</td>
<td>TCR.11960550</td>
</tr>
<tr>
<td>Mounting flange BF22/4</td>
<td>TCR.03668170</td>
</tr>
</tbody>
</table>

Table 19

12.3 Evaluator

<table>
<thead>
<tr>
<th>Type of evaluator</th>
<th>Material No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y209869</td>
<td>201.01630810</td>
</tr>
</tbody>
</table>

Table 20

12.4 Isolating switch amplifier

<table>
<thead>
<tr>
<th>Type of isolating switch amplifier</th>
<th>Material No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFA6 – SOT2 / Ex2</td>
<td>TCR.11952640</td>
</tr>
<tr>
<td>KFD2 – SOT2 / Ex2</td>
<td>TCR.11975630</td>
</tr>
</tbody>
</table>

Table 21
13 Representatives
Voith Turbo GmbH & Co. KG

West-Europe:

Germany (VTCR):
Voith Turbo GmbH & Co. KG
Start-up Components
Volthstr. 1
74564 CRAILSHEIM
GERMANY
Tel.: +49-7951 32-0
Fax: +49-7951 32-480
e-mail: startup.components@voith.com
www.voithturbo.com/startup-components

Great Britain (VTGB):
Voith Turbo Limited
6, Beddington Farm Road
CRO 4XB CROYDON, SURREY
GREAT BRITAIN
Phone: +44-20-8667 0333
Fax: +44-20-8667 0403
e-mail: Turbo.UK@voith.com

Spain (VTEV):
Voith Turbo S. A.
Avenida de Suiza 3
P. A. L. Coslada
28820 COSLADA (MADRID)
SPAIN
Phone: +34-91-6707816
Fax: +34-91-6707841
e-mail: info.voithturbo@voith.com

Austria:
Indukont Antriebstechnik GmbH
Badenerstrasse 40
2514 TRAISKIRCHEN
AUSTRIA
Phone: +43-2252-81118-22
Fax: +43-2252-81118-99
e-mail: info@indukont.at

Belgium (VTBV):
Voith Turbo S. A. / N. V.
Square Louisa 36
1150 BRUSSEL
BELGIUM
Phone: +32-2-7626100
Fax: +32-2-7626159
e-mail: voithturbo.be@voith.com

Greenland:
see Denmark (VTDK)

Denmark (VTDK):
Voith Turbo A/S
Egegårdsvæj 5
4621 GADSTRUP
DENMARK
Phone: +45-46 141550
Fax: +45-46 141551
e-mail: postmaster@voith.dk

Ireland:
see Great Britain (VTGB)

Italy (VITV):
Voith Turbo s.r.l.
Via G. Lammakia 2
42122 REGGIO EMILIA
ITALY
Phone: +39-05-2235-6714
Fax: +39-05-2235-6790
e-mail: info.voithturbo@voith.com

Liechtenstein:
see Germany (VTCR)

Luxembourg:
see Belgium (VTBV)

Netherlands (VTNT):
Voith Turbo B.V.
Koppelstraat 3
7391 AK TWELLO
THE NETHERLANDS
Phone: +31-571-2796-00
Fax: +31-571-2764-45
e-mail: voithnederland@voith.com

Norway (VTNO):
Voith Turbo AS
Gamle Leirdals vei 3
1081 OSLO
NORWAY
Phone: +47 2408 4800
Fax: +47 2408 4801
e-mail: info.turbo.norway@voith.com

Portugal:
see Spain (VTEV)

Faroe Islands:
see Denmark (VTDK)

France (VTFV):
Voith Turbo S. A. S.
21 Boulevard du Champy-Richardets
93166 NOISY-LE-GRAND CEDEX
FRANCE
Phone: +33-1-4815 6903
Fax: +33-1-4815 6901
e-mail: voithfrance@voith.com

Liechtenstein:
see Germany (VTCR)

Sweden (VTSN):
Voith Turbo AB
Firsängsgatan 46
16353 SPÅNGA-STOCKHOLM
SWEDEN
Phone: +46-8-564-755-50
Fax: +46-8-564-755-60
e-mail: volthturbo.sweden@voith.com

Switzerland:
see Germany (VTCR)

Greece:
see Germany (VTCR)

Greenland:
see Denmark (VTDK)

Ireland:
see Great Britain (VTGB)

Italy (VITV):
Voith Turbo s.r.l.
Via G. Lammakia 2
42122 REGGIO EMILIA
ITALY
Phone: +39-05-2235-6714
Fax: +39-05-2235-6790
e-mail: info.voithturbo@voith.com

Liechtenstein:
see Germany (VTCR)

Luxembourg:
see Belgium (VTBV)

Netherlands (VTNT):
Voith Turbo B.V.
Koppelstraat 3
7391 AK TWELLO
THE NETHERLANDS
Phone: +31-571-2796-00
Fax: +31-571-2764-45
e-mail: voithnederland@voith.com

Norway (VTNO):
Voith Turbo AS
Gamle Leirdals vei 3
1081 OSLO
NORWAY
Phone: +47 2408 4800
Fax: +47 2408 4801
e-mail: info.turbo.norway@voith.com

Portugal:
see Spain (VTEV)

Spain (VTEV):
Voith Turbo S. A.
Avenida de Suiza 3
P. A. L. Coslada
28820 COSLADA (MADRID)
SPAIN
Phone: +34-91-6707816
Fax: +34-91-6707841
e-mail: info.voithturbo@voith.com

Switzerland:
see Germany (VTCR)
East-Europe:

Albania: see Hungary (VTHU)

Bosnia Herzegowina: see Hungary (VTHU)

Bulgaria: see Hungary (VTHU)

Croatia: see Hungary (VTHU)

Czech Republic (VTCZ): Voith Turbo s.r.o.
Hvezdoslavova 1a
62700 BRNO
CZECH REPUBLIC
Phone: +420-543-176163
Fax: +420-549-229051
email: info@voith.cz

Estonia: see Poland (VTPL)

Hungary (VTHU):
Voith Turbo Kft.
Felvég Utca 4
2051 BUDAPEST
HUNGARY
Phone: +36-23-312 431
Fax: +36-23-310 441
email: vthu@voith.com

Kosovo: see Hungary (VTHU)

Latvia: see Poland (VTPL)

Lithuania: see Poland (VTPL)

Macedonia: see Hungary (VTHU)

Poland (VTPL):
Voith Turbo sp.z.o.o.
Majdów Duży 74
97-371 WOLA KRAZYSTOPORSKA
POLAND
Phone: +48-44-646 8848
Fax: +48-44-646 8820
email: voithturbo.polska@voith.com

Romania (VTRO):
Voith Turbo S.R.L.
Pipera Business Tower,
10th Floor, 2nd Office
Blv. Dimitrie Pompeu 8
020337 BUCHAREST
ROMANIA
Phone: +40-31-22 36100
Fax: +40-21-22 36210
email: voithromania@voith.com

Russia (VRTU):
Voith Turbo O.O.O.
Branch Office Moscow
Nikofo Yamskaya ul. 21/7, str. 3
109240 MOSKAU
RUSSIA
Phone: +7 495 915-3296 ext. 122
Fax: +7 495 915-3816
mobil Herr Buleanu: +7 919 108 2468
email: vothmoscow@voith.com

Southern- + Middle America:

Canada (VTC):
Voith Turbo Inc.
171 Ambassador Drive, Unit 1
LST ZJI MISSISSAUGA, ONTARIO
CANADA
Phone: +1-905-670-3122
Fax: +1-905-670-8067
email: information@voithusa.com

Mexico (VTX):
Voith Turbo S.A. de C.V.
Alabama No. 34
Col. Nápoles Delg. Benito Juarez
C.P. 03810 MÉXICO, D.F.
MÉXICO
Phone: +52-55-5430 6970
Fax: +52-55-5434 2885
email: vtx-info@voith.com

U.S.A. (VTI):
Voith Turbo Inc.
25 Winship Road
YORK, PA 17408-8419
UNITED STATES
Phone: +1-717-767 3200
Fax: +1-717-767 3210
email: VTI-Information@voith.com

Northern America:

BTS, Installation and Operating Manual

Africa:

Algeria: see France (VTIF)

Botswana: see South Africa (VTZA)

Egypt:
Copam Egypt
33 El Hegaz Street, W. Heliopolis
11771 CAIRO
EGYPT
Phone: +202-22566 299
Fax: +202-22564 757
email: copam@datum.com.eg

Gabon: see France (VTIF)

Guinea:
see France (VTIF)

Ivory Coast:
see France (VTIF)

Lesotho: see South Africa (VTZA)

Marocoo (VTCA):
Voith Turbo S.A.
Rue Ibnou El Koutia, No. 30
Lot Attawfiq – Quartier Oukacha
20250 CASABLANCA
MAROCO
Tel.: +212 522 34 04 41
Fax: +212 522 34 04 45
email: info@voith.ma

Mauretania: see Spain (VTEV)

Mozambique: see South Africa (VTZA)

Namibia: see South Africa (VTZA)

Niger: see France (VTIF)

Senegal: see France (VTIF)

South Africa (VTZA):
Voith Turbo Pty. Ltd.
16 Saligna Street
Hughes Business Park
1459 WITFIELD, BOKSBURG
SOUTH AFRICA
Phone: +27-11-416-4007
Fax: +27-11-416-4080
email: info.vtza@voith.com

Swaziland: see South Africa (VTZA)

Tunesia: see France (VTIF)

Zambia: see South Africa (VTZA)

Zimbabwe: see South Africa (VTZA)
Near + Middle East:

Bahrain:
see United Arab Emirates (VTAE)

Iran (VTR):
Voith Turbo Iran Co., Ltd.
1st Floor, No. 215
East Dastgerdi Ave.
Modarres Highway
19198-14813 TEHRAN
IRAN
Phone: +98-21-2292 1524
Fax: +98-21-2292 1097
e-mail: voithturbo.iran@voith.ir

Iraq:
see United Arab Emirates (VTAE)

Israel (VTIL):
Voith Turbo Israel Ltd.
Tzvi Bergman 17
49279 PETACH ISRAEL
Phone: +972-3-9131 888
Fax: +972-3-9300 092
e-mail: israel@voith.com

Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, Yemen:
see United Arab Emirates (VTAE)

Turkey (VTR):
Voith Turbo Güc Akarma Teknigi Ltd. Şti.
Birlik Mah. 415, Cadde No. 9/5
06610 ÇANKAYA-ANKARA TURKEY
Phone: +90 312 495 0044
Fax: +90 312 495 8522
e-mail: info@aseman.com.tr

United Arab Emirates (VTAE):
P.O.Box 263481
Plot No. TP02074
Technopark, Jebel Ali
DUBAI
UNITED ARAB EMIRATES
Phone: +971-4 810 4000
Fax: +971-4 810 4090
e-mail: voith-middle-east@voith.com

Australia:

Australia (VTAU):
Voith Turbo Pty. Ltd.
Branch Office Sydney
503 Victoria Street
2164 WETHERILL PARK, NSW AUSTRALIA
Phone: +61-2-9609 9400
Fax: +61-2-9756 4877
e-mail: vtausydney@voith.com

New Zealand (VTNZ):
Voith Turbo NZ Pty. Ltd.
Suite 31060 Cook Street
1010 AUCKLAND
NEW ZEALAND
Phone: +64 935 89078
Fax: +64 935 89070
e-mail: VTNZ@voith.com

South-East Asia:

Brunei:
see Singapore (VTSG)

India (VTIP):
Voith Turbo Private Limited
Transmissions and Engineering
P.O. Industrial Estate
500 076 NACHARAM-HYDERABAD INDIA
Phone: +91-40-27173 561+592
Fax: +91-40-27171 141

e-mail: info@voithindia.com

Indonesia:
PT Voith Turbo
Jl. T. B. Simatupang Kav. 22-26
Talavera Office Park, 28th. Fl.
12430 JAKARTA INDONESIA
Phone: +62 21 7599 9848
Fax: +62 21 7599 9846

e-mail: vika.aryanti@voith.com

Malaysia:
see Singapore (VTSG)

Myanmar:
see Singapore (VTSG)

Singapore (VTSG):
Voith Turbo Pte. Ltd.
10 Jalan Lam Huat
Voith Building
737923 SINGAPORE SINGAPORE
Phone: +65-6861 5100
Fax: +65-6861-5052
e-mail: sales@singapore@voith.com

Thailand:
see Singapore (VTSG)

Vietnam:
see Singapore (VTSG)

East Asia:

China:
see Hongkong (VTEA)

Voith Turbo Power Transmission
(Shanghai) Co., Ltd. (VTCB)
Beijing Branch
18 Floor, Tower F, Phoenix Place
5A Shuguan Xil, Chaoyang District
100028 BEIJING
P.R. CHINA
Phone:+86-10-5665 3333
Fax: +86-10-5665 3333
e-mail:
VT_Industry_China@Voith.com

Voith Turbo Power Transmission
(Shanghai) Co. Ltd. (VTCH)
Representative Office Shanghai
No. 265, Hua Jin Road
Xinzhuang Industry Park
201108 SHANGHAI
CHINA
Phone:+86-21-644 286 86
Fax: +86-21-644 286 10
e-mail:
VT_Industry_China@Voith.com

Service Center (VTC):
Voith Turbo Power Transmission
(Shanghai) Co. Ltd.
Taiyu Branch
No. 36 Workshop, TISCO,
No. 73, Gangyuan Road
030008 TAIYUAN, SHANXI
P.R. CHINA
Phone:+86 351 526 8890
Fax: +86 351 526 8891
e-mail:
VT_Industry_China@Voith.com

Hongkong (VTEA):
Voith Turbo Ltd.
908, Guanforce Centre,
3 Hok Yuen Street East,
HUNGHOM, KOWLOON
HONG KONG
Phone:+852-2-2774 4083
Fax: +852-2-2362 5676
e-mail: vtaus@voith.com.hk

Japan (VTFC):
Voith Turbo Co., Ltd.
9F, Sumitomo Seimei Kawasaki Bldg.
11-27 Higashidouchou, Kawasaki-Ku,
Kawasaki-Shi,
210-0005 KANAGAWA
JAPAN
Phone:+81-44 246 0335
Fax: +81-44 246 0860
e-mail: nc-tak@sinet.or.jp

Korea (VTKV):
Voith Turbo Co., Ltd.
Room # 1717, Golden Tower
Officetel 191
Chungjung-Ro 2-Ka
Saeae Moon-Ku
120-722 SEOUL
SOUTH KOREA
Phone: +82-2-365 0131
Fax: +82-2-365 0130
e-mail: paul.lee@voith.com

Macau:
see Hongkong (VTEA)

Mongolia (VT-MON):
Voith Turbo GmbH & Co. KG
2nd Floor Serkh Bogd Co. Ltd.
Office Building United Nations Street 4,
Khoroo Chingleltei District
ULAANBAATAR MONGOLIA
Phone: +976 7010 8869
e-mail: Daniel.Bold@Voith.com

Philippines:
see Taiwan (VTTI)

Taiwan (VTI):
Voith Turbo Co. Ltd.
Taiwan Branch
No. 3 Talang Road,
Xiqiang District
81246 KAOSHUNG
TAIWAN, R.O.C.
Phone: +886-7-806 1806
Fax: +886-7-806 1515
e-mail: vtti@voith.com.tw

Installation and Operating Manual 3626-01-5000 en
Version 6.0 Rev. 6, Printed in Germany, development 2013-06-20.
14 Index

<table>
<thead>
<tr>
<th>Ambient conditions</th>
<th>Isolating switch amplifier 20…30 V AC technical data</th>
<th>Isolator switch amplifier 20…30 V DC technical data</th>
<th>Isolating switch amplifier</th>
<th>Isolation coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluator…………….</td>
<td>……………………………….16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Attenuation……………</td>
<td>…………………………………10</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>BTS……………………</td>
<td>…………………………………3</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Catch pan……………...</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Characteristics……….</td>
<td>…………………………………7</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Cleaning………………..</td>
<td>…………………………………31</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Commissioning………….</td>
<td>………………………………29</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Evaluator………………</td>
<td>…………………………………15</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Connection, electrical</td>
<td>…………………………………16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Control circuit………..</td>
<td>…………………………………26</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Delivered condition….</td>
<td>…………………………………21</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>DIP switch in isolating switch amplifier</td>
<td>…………………………………20</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>…………………………………16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Evaluator………………</td>
<td>…………………………………16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Electrical devices……..</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>evaluator…………………</td>
<td>…………………………………8</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Evaluator………………</td>
<td>…………………………………27</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Display………………….</td>
<td>…………………………………27</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Function………………..</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Installation…………….</td>
<td>…………………………………25</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Setting………………….</td>
<td>…………………………………28</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………17</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Terminal data…………..</td>
<td>…………………………………26</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Wiring diagram………….</td>
<td>…………………………………25</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Excess temperature……..</td>
<td>…………………………………10</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Extension cable………..</td>
<td>…………………………………25</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Fault elimination……….</td>
<td>…………………………………32</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Function………………..</td>
<td>…………………………………8</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Fusible plugs……………</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Hazard………………….</td>
<td>…………………………………4</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Hazardous areas………..</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Initiator………………</td>
<td>…………………………………8</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Function………………..</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Mounting………………..</td>
<td>…………………………………22</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………12</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Installation…………….</td>
<td>…………………………………21</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Evaluator………………</td>
<td>…………………………………15</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………7, 8, 26</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Function………………..</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………19</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Terminal assignment……..</td>
<td>…………………………………28</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………20 V AC technical data</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………20 V AC technical data</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………20 V DC technical data</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Isolating switch amplifier</td>
<td>…………………………………20 V DC technical data</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Maintenance………………</td>
<td>…………………………………16, 30</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Maintenance intervals…….</td>
<td>…………………………………31</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Maintenance schedule…….</td>
<td>…………………………………31</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Maintenance………………</td>
<td>…………………………………16, 30</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Outside cleaning………..</td>
<td>…………………………………31</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Mounting flange………..</td>
<td>…………………………………8</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………12</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>NAMUR……………………</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Noise………………….</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Order for a service engineer</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Orders…………………..</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Possible applications…….</td>
<td>…………………………………7</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Prevention of accidents</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Product observation……..</td>
<td>…………………………………6</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Proper use………………</td>
<td>…………………………………4, 15</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Qualification……………</td>
<td>…………………………………6</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>queries,…………………</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Repair and maintenance</td>
<td>…………………………………30</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Representatives………….</td>
<td>…………………………………40</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Response temperature…….</td>
<td>…………………………………10</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Risk classes…………….</td>
<td>…………………………………4</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Safety………………….</td>
<td>…………………………………4</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Scope of supply………….</td>
<td>…………………………………21</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Serial No………………..</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Servicing………………..</td>
<td>…………………………………16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Signal words…………….</td>
<td>…………………………………4</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Sound pressure level…….</td>
<td>…………………………………5</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare part order………….</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts…………….</td>
<td>…………………………………3</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare Parts Information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Start-up bypass time…….</td>
<td>…………………………………10, 28</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>……………………...</td>
</tr>
<tr>
<td>Switching element……….</td>
<td>…………………………………8</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Function………………..</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Mounting………………..</td>
<td>…………………………………22</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Spare parts information</td>
<td>…………………………………36</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………11</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Symbols………………….</td>
<td>…………………………………4</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Technical data………….</td>
<td>…………………………………11</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Tools………………….</td>
<td>…………………………………6</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>………………………</td>
</tr>
<tr>
<td>Trigger signal…………..</td>
<td>…………………………………9</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>……………………...</td>
</tr>
<tr>
<td>Trouble shooting………..</td>
<td>…………………………………32</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>……………………...</td>
</tr>
<tr>
<td>Evaluator………………</td>
<td>…………………………………16</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>……………………...</td>
</tr>
<tr>
<td>Type designation………..</td>
<td>…………………………………35</td>
<td>………………………………………………………</td>
<td>……………………………….</td>
<td>……………………...</td>
</tr>
</tbody>
</table>

Traditionally, the manual contains detailed instructions and specifications for the isolating switch amplifier, including installation, operation, and maintenance. It is designed to ensure safe and effective use in hazardous areas, providing comprehensive guidance on the product's functionality, application, and technical data.