Voith Paper

VOITH

Centrifugal Separation Low Consistency Cleaner KS60 (EcoMizer™)

Application

2 1/2"-Cleaner for Multi-stage fine cleaning of specifically heavy contaminants in stock preparation and approach flow systems with highest requirements on cleanliness

Features

- Control over reject thickening independent of stock properties through EcoMizer-concept allows compact design of cleaning systems with minimum number of stages and cleaners
- Highest seperation efficiencies at consistencies up to 2.0% through smooth inner surfaces without means for creation of turbulence (ribs, spiral, etc.)
- Lowest fiber losses through high concentration of contaminants in the reject
- Minimum pulsation and blockagefree operation through reject dilution and continuous reject discharge in all stages

Voith Paper Fiber Systems GmbH & Co. KG Escher-Wyss-Straße 25 88212 Ravensburg/Germany Tel. +49 751 8301 Fax +49 751 832050

Voith Paper S.A. Rua Friedrich von Voith, 825 02995-000 São Paulo-SP/Brazil Tel. +011 3944 4354 Fax +011 3944 4848

Voith Paper Inc. 2200 N. Roemer Road Appleton, WI 54911/USA Tel. +920 731 7724 Fax +920 731 0240

www.voithpaper.com

Technical Data	
Туре	KS 60P-I
Application	Precleaning and Final stage
Admissible operating pressure max. [bar]	4
Admissible operating temperature max. [°C]	70
Nominal pressure drop Inlet - Accept [bar]	1.5
Nominal inlet flow [I/min]	110
Required accept pressure min. [bar]	0.1
Inlet consistency max.* [%]	≤ 2.0
Dilution water flow [I/min]	7-15

*Optimum consistency depends on type of debris

